

6th International Symposium on Recent Advances in Food Analysis

November 5 - 8, 2013 - Prague, Czech Republic

16-EU PAHs IN EDIBLE FATS BY STYRENE DIVINYLBENZENE SPE CLEAN-UP AND SOLVENT VENT PTV GC-MS ANALYSIS

Carmela Lestingi, Tamara Tavoloni, Eleonora Bastari, Arianna Piersanti*

Controllo Agrozootecnico, Alimentare ed Ambientale - Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, via Cupa di Posatora 3, Ancona, Italy - www.izsum.it

Introduction

Regulation (EU) 835/2011 identifies benzo(a)pyrene (BaP), benz(a)anthracene (BaA), benzo(b)fluoranthene (BbF) and chrysene (CHR) as indicators for the occurrence of the 16-EU priority Polycyclic Aromatic Hydrocarbons (PAHs) in food, replacing the BaP (Regulation (EU) 1881/2006). Regulation (EU) 836/2011 set specific performances criteria that analytical methods should have before being applied for the official control of PAHs (i.e. LOQ and LOD should be ≤ 0.9 and $\leq 0.3 \mu g/kg$ respectively). PAHs are highly lipophilic substances thus, in food analysis, their selective isolation from fats is a challenging issue. Analytical methods which use size exclusion chromatography purification are commonly used to isolate PAHs from fat, but there is a limit in respect to the amount of fat loadable on a 1x50 cm GPC-column. Here we present a fast, effective and sensitive method which couples a double clean-up step (styrene-divinylbenzene SPE column and GPC chromatography) with a Large Volume Injection in Programmed Temperature Vaporization (LVI-PTV) GC-MS analysis . The procedure enables the analysis of up to 2 g of fat and oil reaching easily LOQs of 0.9 $\mu g/kg$ for all the 16-EU priority PAHs.

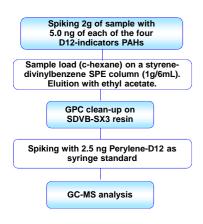


Figure 1 - Flow diagram of sample preparation

responses with broadened peaks (Figure 2).

obtained for all

interferences.

CCP, DiP and DhP (Table 2).

were

resolved

Results and Discussion

The GPC chromatography performed on a 1x50 cm column is an efficient clean-up only if low fat matrices are analysed since maximum 100 mg of fat can be loaded on the column. Willing to extend the procedure to highly fatty matrices, a preliminary purification step on a styrene-divinylbenzene (SDVB) SPE has been introduced. SDVB-SPE enable a hundred fold reduction of the fat with good recoveries of the analytes. Afterwards size-exclusion chromatography was performed. Optimization of the LV-PTV injection parameters was achieved following already published studies [1]. LVI-PTV has shown to be the right approach to enhance the sensitivity of all the 16-PAHs GC-MS analysis, particularly of the last eluting high molecular weights compounds (dibenzopyrenes) which have poor chromatographic

Instrumental responses were linear in the range 2-100 ng/mL (r² > 0.998). With regards to method accuracy, generally good performances

Cyclopenta[cd]pyrene(CCP), which shows very high recoveries for all the three spiking levels investigated, probably as a result of not

Dibenzo[a,h]pyrene (DhP) have too high recoveries only at the LOQ, better performances are obtained at 2 and 4 ng/g. Also good laboratory repeatability and intra-laboratory reproducibility (still estimated only for the LOQ and the LMR) were obtained for all the analytes except for

the analytes

The Dibenzo[a,i]pyrene

GC-MS Method

•Instrument: Agilent GC-6890N, MS 5973 inert

•Column: Agilent DB-17MS 20mx0.18mmx0.18μm.
•Oven temperature program: 50°C, ramp to 200°C at 60°C/min, ramp to 220°C at 2°C/min, ramp to 285°C at 3°C/min, ramp to 320°C at 5°C/min hold 13 mins.

•Injector temperature program: 50°C, hold 0.25 min, ramp to 320°C at 720°C/min.

•Temperatures: transfer line 320°C, source 300°C, quadrupole 150°C

Injection mode: PTV-solvent vent. Vent flow 50 mL, vent pressure 0 psi until 0.2 min.
 Injection Vol: 3 ul

Validation study

The method was validated evaluating selectivity, linearity, precision and trueness. The performances were studied doing replicated analysis (n=14) at three different concentration levels (0.9, 2.0, 4.0, μ g/kg) in intra-laboratory reproducibility conditions for all the 16-EU priority PAHs.

	Table 1 – GC-MS method: sele	ected ions				
Elution order	PAHs	Monitored lons(m/z)				
	FARS	Target	Qualifiers			
1	7H-Benzo[c]fluorene	216	215			
2	Benzo[a]anthracene-D12	240				
3	Benzo[a]anthracene	228	226			
4	Cyclopenta[cd]pyrene	226	224			
5	Chrysene-D12	240				
6	Chrysene	228	226			
7	5-Me-Chrysene	242	241			
8	Benzo[b]fluoranthene-D12	264				
9, 10,	Benzo[b], Benzo[k],	252	250			
11	Benzo[j]fluoranthene	232	230			
12	Benzo[a]pirene-D12	264				
13	Benzo[a]pyrene	252	250			
14	Perylene-D12	264				
15	Indeno[1,2,3-cd]pyrene	276	277			
16	Dibenzo[a,h]anthracene	278	276			
17	Benzo[ghi]perylene	276	277			
18, 19, 20, 21	Dibenzo[a,I], Dibenzo[a,e], Dibenzo[a,i], Dibenzo[a,h]pyrene	302	300, 303			

A 4-5 PAH mix 5 ng/mL LV-PTV injection (3 μL) A 4-5 PAH mix 5 ng/mL LV-PTV injection (3 μL) A 4-5 PAH mix 5 ng/mL LV-PTV injection (3 μL) A 4-5 PAH mix 5 ng/mL pulsed splitless injection (1 μL) PAH mix 5 ng/mL pulsed splitless injection (1 μL) B 4-5 PAH mix 5 ng/mL pulsed splitless injection (1 μL) PAH mix 5 ng/mL pulsed splitless injection (1 μL) B 4-5 PAH mix 5 ng/mL pulsed splitless injection (1 μL) PAH mix 5 ng/mL pulsed splitless injection (1 μL)

Figure 2 – TIC Chromatograms (A) of a mixture of the 16 priority PAHs (5 ng/mL), the 4 D12-analogues and the D12-Perylene (10 ng/mL) injected (3 μ L) in LV-PTV mode and (B) of a mixture of the 16 priority PAHs (5 ng/mL) and Chrysene-D₁₂ (50 ng/mL) injected (1 μ L) in pulsed splitless.

Table 2 - Validation study: spiking levels, mean concentrations, recoveries (R %) and coefficients of variation obtained in repeatibility (CVr,%) and inter-laboratory reproducibility (CVR,%) conditions

except

(DiP)

for

and

PAHs	BcF	BaA	ССР	CRI	5MC	BbF	BkF	BjF	BaP	IcP	DhA	BgP	DIP	DeP	DiP	DhP
Spiking Level (ng/g) 0.9 (LOQ)																
Mean (ng/g fat)	0.9	0.9	1.4	1.0	1.1	0.9	1.0	1.0	0.9	1.0	0.9	0.7	0.8	0.8	1.3	1.5
R%	99	106	158	114	122	103	111	115	99	114	99	81	85	84	145	165
CVr (%)	3.3	3.1	4.5	5.1	5.6	5.3	5.1	5.4	4.0	6.3	18	4.0	4.3	5.1	4.1	6.4
CV _R (%)	18	6.4	36	6.4	5.7	6.8	5.2	5.2	8.2	6.1	16	20	15	14	11	15
Spiking Level (ng/g)	ng Level (ng/g) 2.0 <i>(LMR)</i>															
Mean (ng/g fat)	1.7	2.0	3.9	2.1	2.4	2.0	2.2	2.2	1.9	1.7	1.4	1.3	1.4	1.3	2.1	2.5
R%	86	100	194	106	120	100	109	113	96	88	72	67	72	66	106	126
CVr (%)	1.7	1.0	5.4	1.3	1.3	1.6	1.8	1.4	1.3	2.2	23	0.8	1.3	1.5	2.3	4.4
CV _R (%)	6.6	12	25	13	13	13	10	13	8.6	4.3	21	12	6.2	7.8	20	36
Spiking Level (ng/g)		4.0 (2 <i>LMR</i>)														
Mean (ng/g fat)	3.8	4.4	8.7	4.7	5.4	4.5	4.8	5.0	4.2	3.8	3.6	3.2	3.1	2.9	3.7	4.1
R%	95	112	219	118	136	113	120	125	106	97	91	80	77	73	92	104
CVr (%)	1.3	0.9	3.6	1.6	1.4	1.6	1.5	1.9	0.8	1.5	6.0	0.7	0.6	1.2	1.7	2.1

Conclusions

The use of SDVB-SPE columns before the GPC-chromatography enable to extend the PAHs-analytical procedure to highly fatty matrices reaching performances compliant to legislative requirements. Also LVI-PTV helped to reach the objective with a considerable improvement of the GC-MS response. The method is easily applicable and enable the simultaneous analysis of several samples in

one batch.

References

[1] Gòmez-Ruiz J., Cordiero F., Lòpez P., Wenzl T. Talanta 2009; 80: 643-650.

Contact: Dr Arianna Piersanti

Stampato a cura dell'Unità Operativa di Supporto Biblioteca, Informazione, Editoria (2011).

Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale-Non opere deriva

a.piersanti@izsum.it

Per leogere una copia della licenza visita il sito web http://creativecommons.org/licenses/by-n-p-dd/2.5/l/ o spedisti una lettera a Creative Commons.171 Second Street. Suite 300. San Francisco. California. 94105. US.